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We propose KTDSEP, a kernel-based algorithm for nonlinear blind source
separation (BSS). It combines complementary research fields: kernel fea-
ture spaces and BSS using temporal information. This yields an efficient
algorithm for nonlinear BSS with invertible nonlinearity. Key assump-
tions are that the kernel feature space is chosen rich enough to approx-
imate the nonlinearity and that signals of interest contain temporal in-
formation. Both assumptions are fulfilled for a wide set of real-world ap-
plications. The algorithm works as follows: First, the data are (implicitly)
mapped to a high (possibly infinite)-dimensional kernel feature space. In
practice, however, the data form a smaller submanifold in feature space—
even smaller than the number of training data points—a fact that has al-
ready been used by, forexample, reduced settechniques for support vector
machines. We propose to adapt to this effective dimension as a preprocess-
ing step and to construct an orthonormal basis of this submanifold. The
latter dimension-reduction step is essential for making the subsequent
application of BSS methods computationally and numerically tractable.
In the reduced space, we use a BSS algorithm that is based on second-
order temporal decorrelation. Finally, we propose a selection procedure
to obtain the original sources from the extracted nonlinear components
automatically.

Experiments demonstrate the excellent performance and efficiency of
our KTDSEP algorithm for several problems of nonlinear BSS and for

more than two sources.
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1 Introduction

The problem of nonlinear blind source separation (BSS) is a challenging re-
search task, and several methods have been proposed in the literature (Burel,
1992; Valpola, Giannakopoulos, Honkela, & Karhunen, 2000; Lee, Koehler,
& Orglmeister, 1997; Lin, Grier, & Cowan, 1997; Yang, Amari, & Cichocki,
1998; Marques & Almeida, 1999; Pajunen, Hyvdrinen, & Karhunen, 1996;
Pajunen & Karhunen, 1997; Fyfe & Lai, 2000; Taleb & Jutten, 1999; Hyvari-
nen, Karhunen, & Oja, 2001). Fruitful applications are conceivable in, among
others, the fields of telecommunications, array processing, vision, biomed-
ical data analysis, and acoustic source separation where nonlinearities can
occur in the mixing process. Nonlinear BSS has recently been applied to
data from industrial pulp processing (Hyvarinen et al., 2001).
In nonlinear BSS we observe a mixed signal,

x[t] = f(s[t]), (1.1)
where x[t] := [x1[t], ..., x[t]]" and s[t] := [s1[t], . ... sx[t]] " aren x 1 column
vectors with t = 1, ..., T and f is a nonlinear invertible function from %" to

9. In the special case where f is an n x n matrix, we regain standard linear
BSS (see Hyvarinen et al., 2001; Cardoso, 1998).
Another important special case is the postnonlinear model (PNL),

x[t] = f(As[t]), (1.2)

where A is a linear mixing matrix and f is a postnonlinearity that oper-
ates component-wise. Given these constraints, the PNL problem can be
solved by inverting the one-dimensional nonlinear functions (Taleb & Jut-
ten, 1999; Ziehe, Kawanabe, Harmeling, & Miiller, 2001; Achard, Pham, &
Jutten, 2001).

Existing algorithmic approaches of the general nonlinear BSS problem
have used, for example, self-organizing maps (Pajunen et al., 1996; Lin et
al., 1997), extensions of generative topographic mapping (GTM; Pajunen
& Karhunen, 1997), neural networks (Burel, 1992; Marques & Almeida,
1999), or Bayesian ensemble learning (Valpola et al., 2000; Iline, Valpola,
& Oja, 2001; Lappalainen & Honkela, 2000) to unfold the nonlinearity f.
Also, a kernel-based method was tried on simplistic toy signals (Fyfe
& Lai, 2000).

Note, however, that these methods are often of high computational cost
and, depending on the algorithm, are also prone to run into local minima.

1.1 Problem Formulation. In this work, we focus on the general non-
linear BSS problem like equation 1.1, assuming that the underlying source
signals have characteristic time structure, that is, the spectra of the compo-
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nents are pairwise different. An example of a nonlinear mixture is

] = el _ pslt]

x[t] = el 4 pmselth

Note that we are not assuming that f operates component-wise. The task is
to recover the unknown source signals s[t] using only the mixed signals x[t].

Hyvarinen and Pajunen (1999) pointed out why in general there are no
unique solutions to this problem. However, our method, based on the ingre-
dients of kernel feature spaces, dimension reduction, second-order tempo-
ral decorrelation BSS, and a selection procedure (see Figure 1), can recover
the sources s by restricting the space of possible functions used to invert
the nonlinearity f (see section 5.5 for a detailed discussion) and by exploit-
ing the time structure of the unknown sources (see section 3 for a detailed
discussion).

Nonlinear Mixture Extracted
in Input Space Source Signals

W](c) and (d)

<I>i(a)
) K

Feature Space Parameter Space

—~

(1

Figure 1: The nonlinear BSS problem is solved in four steps: (a) The data are
mapped from input space to feature space, (b) the dimensionality is reduced,
(¢) second-order temporal decorrelation BSS is used, and {d) an automatic se-
lection procedure is applied.
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1.2 Kernelizing Blind Source Separation. Let us first discuss kernel-
based learning, which has become a popular technique (Vapnik, 1995; Cris-
tianini & Shawe-Taylor, 2000; Schélkopf & Smola, 2002; Burges, 1998; Schol-
kopf, Smola, & Miiller, 1998; Miiller, Mika, Ritsch, Tsuda, & Scholkopf,
2001). The basic idea of kernelizing (see Scholkopf et al., 1998) allows the
construction of very powerful nonlinear variants of existing linear scalar
product-based algorithms by mapping the data x[f] (f = 1, ..., T) implic-
itly into some kernel feature space F through some mapping &: W' — F.
Performing a simple linear algorithm in F then corresponds to a nonlinear
algorithm ininput space. In other words a linear BSS in F would giverisetoa
nonlinear BSS algorithm in input space. All can be done efficiently and never
directly but implicitly in F by using the kernel trick k(a, b) = ®(a) - ®(b).!
However, a straightforward application of the kernel trick to BSS has failed
so far for two reasons: applying a linear BSS algorithm in feature space
will not necessarily identify the sought-after signals, since there are very
likely directions that are also independent but higher-order versions of the
original signals, and, in principle, the BSS algorithm has to be applied, af-
ter kernelizing, to a T-dimensional problem, which is numerically neither
stable nor tractable.?

Anew aspect that we add in this contribution is to apply firsta dimension-
reduction step before BSS, since typically the data form a lower-dimensional
subspace in F, even much lower than T-dimensional. We therefore propose
a mathematical construction, very much inspired by reduced-set methods
(Schélkopf et al., 1999), that allows us to adapt to the intrinsic data di-
mension. In the next step, an orthonormal basis of this low-dimensional
submanifold is constructed, which eventually makes the computations of
a subsequent BSS algorithm tractable. The subtle difference to reduced-set
techniques is that we do not aim to construct a low-dimensional basis for a
good classification; rather, we aim for an efficient, that is, low-dimensional,
description of the data in F. Note, that we use a BSS algorithm that is based
onsecond-order temporal decorrelation (Ziehe & Miiller, 1998; Belouchrani,
Meraim, Cardoso, & Moulines, 1997), which is an essential building block
of our algorithm. Finally, the sources of interest are automatically selected
after the BSS step.

The four ingredients of kernel feature space, dimension reduction,
second-order temporal decorrelation BSS, and a selection procedure give
rise to an algorithmic solution, called kTDSEP, that is mathematically ele-
gant (see section 2) and efficient, with high performance, as we will see in
the experiments on nonlinear mixtures of artificially generated signals and
various sound signals (see section 5). A conclusion is given in section 6.

! This trick is essential if 7 is an infinite-dimensional space.
2 Note that although F might be infinite-dimensional, the subspace of F where the
data lie is maximally T-dimensional.
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2 Constructing Kernel Feature Spaces of Reduced Dimension

In order to establish a linear problem in feature space t1.1at corresponds. to
some nonlinear problem in input space, we need to specify how. to map l;rll-
putsx[1], ..., x[T] € M" into feature space F and how to ha_ndle 1ts1 pt()ss.la )Z
high dimensionality. Note that x[f] is scaled down such that its absolute e
imum is one. Here we force the signals between —1 and 1 before ma_pplralg
to F. This will become important for the selection procedqre (see section )i
In the following, we describe two methods that obta%n an 01'thogo.nat
basis in feature space with reduced dimension and explain how to pro;e};:
the data onto this finite-dimensional basis such that BSS techniques can be
lied.
app’ﬂ\ere exist a variety of other dimensionality—red‘uction methodslu for tth)e;
kernel setting. Smola and Scholkopf (2000).a;_>prox1mate the kernc}e: .rr;aagd
by iteratively picking columns of that mat'rlx in a greedy mantrl:\e(:'(.:l :r:d e
Scheinberg (2001) use the Sherman-Morrison-Woodbury me e
product-form Cholesky factorization to obtain low—ra-x.\k kernel represe i
tions. Williams and Seeger (2001) employ the NYStI"On\ metho? tct) afralr:r
domly sampled subset of the data that is very similar to the first o l?n
proposed methods (see section 2.1). However, we perform the resamp dg_
several times and use in addition the condition numbers of the correspon

ing kernel matrices to pick a particular subset.

2.1 Finding a Basis via Random Sampling and Clustering.\ I’I"l ?dditxtzr;
to the input points, consider some further.pomts Vie..os Vg4 € tl}!\ ;i)am o
same space that will later generate a basis in F. Let us denote q)?v : gpwe
points by &y := [®(x[1]..... & (x[T)] and Py = [®(vi). ..., ] Ay
assume that the columns of ®, constitute a basis of the column space
®,, formally expressed as

span(®y) = span(®y) and rank(®y) = 4. (2.1)

In section 2.1.2, we will explain how and to whe?t degree this asggmp?gn
can be fulfilled. Moreover, ®y being a basis implies tha't the matrix’ @, ,i
has full rank, and its inverse exists. So now we can define an orthonorma
basis (see the empirical kernel map in Scholkopf et al., 1999),

T 2 2.2
T = DD, dy) V2 (22)

3 We denote the points of the time series with square brackets (e.g., x[t]) and other

oints of the input space with subscripts (e.g. vq) - '
P * The columF;x space of ®x is the space spanned by the column vectors of @y, written

span(®x). ] ‘ .
5 The ijth entry of the matrix @, ®y is D(v,) P(v,).
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the column space of which is identical to the column space of ®,. Con-
sequently, this basis E enables us to parameterize all vectors that lie in

the column space of &, by some vectors in 9. For instance, for vectors

Z;T=1 ap; P (x[i]), which we write more compactly as ®xue, and Oy 8¢ in the
column space of @, with ag and Be in 07, there exist oz and Bz in N such
that ®,¢¢ = Eaz and PxBe = EPz. The orthonormality implies

B

)]

ag®, Do =aiZ Efz =«

[OFS]

(2.3)

which states the remarkable property that the dot product of two linear
combinations of the columns of ® in F coincides with the dot product in
%4, By construction of Z (see equation 2.2), the column space of ®y is natu-
rally isomorphic (as a vector space) to the ). Moreover, this isomorphism
is compatible with the two involved dot products, as was shown in equa-
tion 2.3. This implies that all properties regarding angles and lengths can
be taken back and forth between the column space of ®, and %“. The space
spanned by EZ is called parameter space. Figure 2 pictures our intuition.
Usually kernel methods parameterize the column space of ®y in terms of
the mapped patterns {®(x[i])}, which effectively corresponds to vectors in
RT. The orthonormal basis from equation 2.2, however enables us to work
in M9, that is, in the span of E.

2.1.1 Projecting the Input Data onto an Orthonormal Basis. By employing
the kernel trick, we can directly map the input data onto the subspace of

input space

) %ﬂ,

feature space

parameter space

§Rd

Figure 2: Input data are mapped to some submanifold of F, which is in the
span of a d-dimensional orthonormal basis Z. Therefore these mapped points
canbe parameterized in M. The linear directions in parameter space correspond
to nonlinear directions in input space.
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feature space spanned by the orthonormal basis. The expressions
(@) By)jj = P(v) d(v) = k(vi.vy) with ij=1....d

are the entries of a real-valued d x d matrix ®J @, that can be effectively
calculated using the kernel trick. By construction of v1, ..., vy, it has full
rank and is thus invertible. Similarly, we get

(@) D) = Dv) d(x[jD = kvi.x[jD
with i=1..... d. j=1.....T.

which are the entries of the real-valued d x T matrix <I>I ®,. Using both
matrices, we compute finally

U [t] := 2T x(t]) = (@] dy) 2] S (xt])

1
K(vi.vy) - k(viovp)] " ? [kevaxlt]) 24

k(v vi) - k(vgovy) k(vq. x[t])

which is a real-valued d x 1 vector representing a projected data point. Note
that (®] ®,)~ /2 can be omitted if the subsequent BSS procedure contains a
whitening step.

Regarding the computational costs of this projection, we have to evaluate
the kernel function O(d211) + O(dTn) times, and equation 2.4 requires O(d*)
multiplications where 1 denotes the dimension of the input space. Again,
note that d is much smaller than T. Furthermore, after projection, the storage
requirements are reduced since we do not have to hold the full T x T kernel
matrix but only ad x T matrix.

2.1.2 Choosing Vectors for the Basis in F. So far, we have assumed as
given some points vi..... v, that fulfill equation 2.1, and we presented the
beneficial properties of our construction. In fact, the vectors vy, . ... v, are
roughly analogous to a reduced set in the support vector world (Scholkopf
et al., 1999). Note, however, that often we can only approximately fulfill
equation 2.1, that is,

span(dy) = span(dy). (2.5)

for example, for an RBF kernel span(®y) is T-dimensional, but span((bv). is
by definition d-dimensional (for further discussion, see appendix A; Will-
jams & Seeger, 2000; Bach & Jordan, 2001). Several options exist to achieve
this approximation.

The points vy. .. .. v; have to be chosen such that in equation 2.4, the
inversion of the kernel matrix K,, whose entries are

(Ky)ij = (O, Dy)iy = k(v,. V).
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is numerically stable. We try to find a set of points such that the condition
number of its corresponding kernel matrix is below a certain threshold,
and if we add one more point, the condition number is above.® Since we
cannot check all possible combinations, we randomly sample d points (for
fixed d) repeatedly, say r, for example, 100 times. Roughly speaking, we
perform this sampling for different 4 until we find d points, v1. . . .. vy, that
are linearly independent in feature space (more precisely: the corresponding
condition number is below the threshold), but we cannot find d + 1 points
with the same property (i.e., the condition number for those points is above
the threshold). This is done by computing the kernel matrix in O(d2n) time,
yielding an overall cost of O(dr)[O(d) + O(d?n)] = O(d®rn) where 1 denotes
the dimension of the input space.

This procedure determines d and points vy, ..., v,. Running k-means
clustering (with k = d), costing O(Tdn), in input space, is another way to
pick such points. Our experience shows that both approaches work well as
long as d is chosen large enough.

2.2 Finding a Basis via Kernel PCA. Another more direct method to
obtain the low-dimensional subspace is kernel PCA (Schélkopf et al., 1998).
Such a subspace is optimal with respect to the reconstruction error in feature
space; however, computational costs are slightly increased (see Figure 13).
For simplicity, we assume that the data are centered in feature space.” To
perform kernel PCA, we need to find eigenvectors and eigenvalues of the
covariance matrix %d)x <I>; - Denoting the diagonal matrix with eigenvalues
A1 2, .... > At along the diagonal as A, the eigenvectors E = [e. ..., er]of
the kernel matrix +®J dx fulfill

(%d);d)x) E=EA,

which immediately implies

1
(?qaxcp;) (OxE) = (PxE)A.

So, A1,.... AT are the eigenvalues of %‘I’x‘b; with corresponding eigen-
vectors ®xE. Normalizing the first d eigenvectors yields a d-dimensional
orthonormal basis,

E = OxEg(TAy) 172,

® The condition number of a matrix is the ratio between the largest and the smallest
singular value.

7 The kernel matrix K with entries k(x{i], x[j]) can be easily centered (Schélkopf et al.,
1998) by K > K — 17K — K17 + 17K17y, with 17 being the T x T matrix with all entries
equalto 1/T.
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with E; :=[e1. ... es], A4 being the diagonal matri>f with ?»1, e Ad Egg;%
the diagonal and (TA™'? ensuring orthonormality. This bafls Tlrxled e
us to parameterize the signals ®(x[t]) in feature space as reai-va

dimensional signals,

W [1] = ZT () = (TAy) " 2E] g ItD,
v N 1]. x[t
Vi 0 1 ey ] [kx[1).x[tD 26)
1
NG : : :
0 L | e J Ll&ITT.xItD

ich are calculated conveniently using the kernel trick.
Whéff:ceriemel PCA involves solving the eigenvalue prot;lem for a _1ar1§_i;e
matrix, whose size depends on the amount of data, Q(T ), we typllca y
apply kernel PCA to a subset of the original data set if T becomes large
(Mika, 1998; Scholkopf et al., 1999).

3 Nonlinear Blind Source Separation

Clearly, BSS algorithms cannot be applied directly in full feature space V'wthi
out the proposed reduction step. They would need to sc_:lve a T—dmr.\en?l(;pa
BSS problem, which is intractable. A further problem is that manipulating
such a T x T matrix can easily become numerically unstable, and even O}Ier—
fitting might occur (Hyvérinen, Sareld, & Vigério, 1999). I-n the prev19us
section, we mapped the signals x[¢] from input space onto signals Wx[tl ina
d(« T)-dimensional parameter space (see Figure 1). Thls_ was done either
by random sampling or k-means clustering using equatlo.n 2.4'or b.y ap-
plying kernel PCA together with equation 2.6. Now we are in a s1tuat1f)n in
which the nonlinear problem in input space has been transformed to a linear
problem in parameter space where we can apply linear BSS m.ethods. In par-
ticular, we propose to use TDSEP, a second-order BSS technique that relies
on time-shifted covariance matrices of the mapped signals Wy|t], thereby'ex-
ploiting the assumed time structure of the unknown sources (see appendix B
for a discussion of why not to use kurtosis-based techniques). _

We briefly describe the TDSEP algorithm (details can be found in Ziehe &
Miiller, 1998; sce also Belouchrani et al., 1997). For the signals in parameter
space,

Wt = =7 dx[t]) € w.

we define svymmetrized time-shifted covariance matrices,

1 T-1 -
= e Y (W] = )[4+ T] - py)
T 2T = . ; x[ ] v X

+ (W [+ 1) = ) (B[] - o))
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with puy = %—,Z,T:l U, [t]. Then we find a matrix W that simultaneously
diagona\lizes8 several of these matrices R.,, that is, the matrices

WR W' i=1...m

should become approximately diagonal. W is the sought-after demixing
matrix. The extracted d nonlinear components are

vt := W, 1] e %9

4 Selecting from the Extracted Components

Besides the sought-after sources, there are also signals that we are not in-
terested in among the extracted components y[t]. Empirically, these other
signals can be explained by higher-order monomials of the sources, as we
will see next (with ideas from Harmeling, Ziehe, Kawanabe, Blankertz, &
Miiller, 2001). These monomials are well motivated for polynomial kernels
but are also useful to analyze signals that have been extracted using a gaus-
sian kernel.

4.1 Reconstructing the Extracted Components. For two source signals
51 and s, we call the monomials of these sources up to a certain degree
quasi sources. For example, the quasi sources up to degree 2 (i.e., where each
variable appears up to degree 2) are

qQ = (S%S%, 52152. s%. s1s§. 5182, 51, s% s2) "

For brevity, we write s; instead of s1[t] (i.e., 51 is a signal). In general, the
quasi sources up to degree m are all monomials of the form s}"'s3" for 0 <
iy, ma < ni. Accordingly, q,, is the vector containing all those monomials.
Most quasi sources are pairwise correlated. For two independent signals
sy and sy, the correlation between arbitrary monomials in 51 and s; is
ky

« Ka
ko omay _ COV(STS; . 575,7)
COrr(s)'sy ', 87°8,°) =

/‘— ki J'r
[Tici2 yvar(sy's;”)

Etst ") Elsy™™) — Esy') L)'} Elsy} Elsy”)
iz VST TEI™) = (Y ELS))

Since for symmetrically distributed signals s) and s> (with mean zero and
variance one), the odd moments are zero,

E{s\} =0 ifkisodd,

8 We use the algorithm described in Cardoso and Souloumiac (1996). See also Cardoso
{1999).
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. & ke it . .
two quasi sources sy s5 ' and sysy” are uncorrelated in most cases:

cm‘r(s‘?%é’“ . S;;:S::!"’) =0 ifky + ko isodd or my + my is odd. 4.1)
This is easily implied from the above equation using the fact that if the
sum of two integers is odd, then one of the summands must be odd as
well. Therefore, the quasi sources for two signals can be collocated into four
groups with no correlations among the groups; for example, for the quasi
sources up to degree 2, the four groups are (see Figure 3)

Ay 5 B

(515352 3. {5782, 2) (155, ;1) (sl

We will use these findings to reconstruct the extracted components for an
easy example. Consider two sinusoidal source signals s[t] = [s1[t], solt”
that are nonlinearly mixed by

x[t] = Asi[t]. s2[D T + esq[ts2[ ]
with

A -1.2173 -1.1283 d —0.2611
= and ¢ =
~0.0412 —1.3493| 0.9535
(mixture taken from Molgedey & Schuster, 1994). Running our algorithm
with a polvnomial kernel of degree 4,
kia.b)=(a b+ 1
(\lm(\l o~ o~

N
f ¢ @ @
N~ N~ NN N~ N -
) )

w (2] 2] w 1% w

(7]
wn

w [
LV N

»n
BN SIS U TR M

Figure 3: Most quasi sources are pairwise correlated. The right panel shows the
covariance matrix of the quasi sources up to degree 2, the lower left panel up to
degree 4, and the upper left panel up to degree 8. Note that the quasi sources
can always be collocated into four groups.
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Y, . s, [corr= -0.992] 2 o com=0995 2
A AAAAARAAN
|l 4 A fw;\{\/u\/w;u’uo
| v ! TRTATRTATATATATATANAY:
i YV YV VYUYV VY
-2 -2 -2
v, s, [corr=-0.988] corr= 0.990

o

WMMW\/\ NWMWWUW '\f‘%ﬂu”w”‘ | \‘

v, s sts, [corr=0.603] s corr= 0.909 s
tthoniiyte aglholitlpte e
-5 3 -5 -5

¥ 5 s;'s, [corr=0.538) 10 corr= 0.960 5
AR e
-5 0 -5

Figure 4: The extracted signals in the left panels (only four are shown) are
matched with single quasi sources in the middle panels and combinations of
subgroups of quasi sources (right panels).

we have to consider the quasi sources up to degree 4: all possible products
of 51, 52, 53, st and their counterparts in s,. Using equation 4.1, these quasi
sources can also be arranged into four groups with no correlations among
the groups. As examples, we explain four of the extracted signals using
these quasi sources: y7. y4. y1, y9, shown in the left panels of Figure 4. The
middle panels show the best matching quasi sources. Note that the true
sources, s1 and sz, have a very high correlation to their left neighbors, y7
and vy, respectively. The other extracted signals, y; and y9, do not have a
very high correlation to any of the quasi source signals. The best fits, s}s;
and sfs3, are plotted in the two lower middle panels. The extracted signals
can better be explained with linear combinations of subsets of mutually
correlated quasi sources. Therefore, we combined all quasi sources that are
correlated with s{s to reconstruct yo. The result is shown in the lower right
panel, which reaches a good fit (corr = 0.960). The same holds for y; and
the other extracted signals not shown in the figure. Note that for y; and v,
which match s; and s; reasonably well, more quasi sources do not improve
the result notably.

Empirically, we have seen that the extracted components can be ex-
plained by linear combinations of higher-order monomials of the sources.
This knowledge can be used to suggest several options to select the sig-
nals of interest: the signals built by higher-order monomials are very peaky
and therefore have, after proper normalization, a lower variance and also a
lower description length (Rissanen, 1978) than the signals of interest. How-
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ever, whether methods based on these intuitions work in practice depends
very much on the considered signals. The goal is to identify the sought-
after signals s; and s; among the other extracted signals. If, for example,
s1 has a much higher description length than s, there might be a probh_an.u
probably s2 will have a large description length as well, and thzeliefore itis
more likely that a method based on these principles will prefgr 51 1n.stea.d f)f
s2. This explains why these selection procedures can fail easily, which is in
accordance with our experience of running a number of experiments with
different signals.

4.2 Selection by Rerunning the Algorithm. An algorithmic tric.k tl'lat
worked well in all our experiments is to apply the algorithm twice. This trick
is motivated by work on assessing reliability (Meinecke, Ziehe', Kawanabe,
& Miiller, 2002, in press; Miiller, Vigario, Meinecke, & Ziehe, in press). In-
tuitively, the idea is to look for the most reliable components among the
extracted signals—the components that appear again after reiteration of the
algorithm. For this, we repeat the algorithm with the same parameters (ker-
nel choice, d, T, ...), but instead of sending x[t] into the feature space, we
start with the d-dimensional demixed results y[], map them to the fegture
space, reduce the dimensiona]ity,'9 and demix with TDSEP, which yields
y'[t]. The sought-after components of y[t] are the ones that are matched best
by the components y'[t] of the second run of TDSEP in feature space. ‘

Why does this selection process find the right signals? As we saw in
the previous section, most of the undesired signals are linear c'ombmatxons
of peaky higher-order monomials of the source signals, which can have
very large values. Before the signals get mapped to feature space, they are
scaled such that their absolute maximum is one (see the first paragraph of
section 2). This is done by dividing each signal by its absolute maxirr_xum.
The effect of this rescaling is that very large peaky signals are penalized;
their variance is decreased more than the variance of signals that are lfass
peaky. By doing so, we bias the desired signals to appear again with high
correlations after another nonlinear demixing. This method works very well.
All experiments documented in this article successfully used this selection
method. Our experience shows that this selection fails only in cases where
the sources are not recovered at all, that is, where the demixing failed, which
means that there is nothing to select from.

5 Experiments

Nonlinearities appear in different contexts; for example, amplifier satura-
tion results in difficult nonlinearities. Also, sensors can have nonlinearities,
which have a disadvantageous influence on the recorded signals. However,

9 The kernel function can be used with signals of arbitrary dimension.
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real-world signals have the drawback that the ground truth—the true source
signals—is not known. Since we want to demonstrate the performance of
our algorithm, we consider in this article well-defined, controlled situations
where we can compare the results of the algorithm to the true sources.

5.1 Deterministic Artificial Data. In the first experiment, we gener-
ate 2000 data points from two sinusoidal signals s[t] = [s1[#].52[t]]" that
have different frequencies (si[t] = sin(0.057t), s;[t] = sin(0.021x¢) with
t = 1,...,2000). These source signals are nonlinearly mixed (see the left
panel in the first row of Figure 5) by

xi[t] = esilth _ psaltl
o] =e™ U . pmsalf],

We use a polynomial kernel of degree 9,
k(a.b) = (a'b+1)’,

which induces a feature space of all monomials up to degree 9. Applying
k-means clustering to 500 randomly chosen input vectors, we determine
vectors vi, ..., vy in input space, shown as + in the left panel in the first
row of Figure 5. Projecting onto the feature space images of these vectors
reduces the dimension to 20. As the second step, we apply TDSEP (with
time shifts ¢ = 0,...,7) to those 20-dimensional mapped signals W[t].
We obtain 20 components, among which we select two components, as
described in the previous section. Their scatter plots and their waveforms
are shown in the right panels in the first and third rows of Figure 5. For
comparison, we plot in the left panels of the second and fourth rows the
results of applying linear TDSEP directly to the nonlinearly mixed signals
x[t]. In this simple example, linear TDSEP already reaches a high correlation
(corr(yi™, s1) = 0.9716, corr(yi", 5,) = 0.9716) to the true sources, but as we
can see in the scatter plots shown in Figure 5, linear BSS fails to recover the
right shape, in contrast to our nonlinear method, which recovers the shape
of the scatter plot almost perfectly (corr(yz.s1) = 0.9998, corr(ys.s2) =
0.9999). We study the same mixture with two sinusoidal signals that have
almost the same frequencies (s1[t] = sin(0.0045xt), 5;[¢] = sin(0.0057 ) with
t=1,..., 2000). Figure 6 shows the results after running our algorithm with
the same parameters as in the previous case. We see that even two signals
that have almost the same frequencies are separated.

5.2 Speech Data—Bent. Inanother experiment, we nonlinearly mix two
speech signals s[#] = [s1(+), s2(H)] T (each with 20,000 samples, sampling rate
8 kHz, each ranging between —1 and +1) by

x1[t] = —(s2[t] + 1) cos(si[t])
x2[t] = 1.5(s2[t] + D) sin(mwsift]).
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Figure 5: Deterministic artificial data. Scatter plots and waveforms of the non-
linear mixture and the nonlinear demixing (first and third rows) and of linear
demixing and the true source signals (second and fourth rows).
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Figure 6: Deterministic artificial data with very close frequencies: Scatter plots
and waveforms of the nonlinear mixture and the nonlinear demixing {first and
third rows) and of linear demixing and the true source signals (second and
fourth rows).
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We employ a gaussian radial basis function (RBF) kernel,

. ra—by?
kia,by=¢ 2*

which induces a feature space where each dxrectmn measures fhe smulanty .
to one of the training points. We can set o= 5 ! and use ~ .

k(a, b) = ¢~1a"b¥", .
without loss of generality, if signals are scaled in an appmpmate way. Pm— .
jecting onto feature space images of the vectors vy, ..., Voo € R? (depxcted

as + in the left panel in the first row of Figure 7), whmh aredetermined by re-
peated random sampling, reduces the dimensionality to d 20 Among the
20 signals that we obtain by TDSEP (with time shifts t = 0. ..., 7) we auto-
matically choose with our selection method two signals that tum outto reach -
very high correlations (corr(ys, 51) = 0.9768, corr(yy, s2) = 0. 992u) thh the

0):'121!’1«11 source signals. Since the linear method can only shear and rotate the .

data, it fails to recover the two signals (corr(y’”’, 51} = 0 8811 corr(yl"’ sz) =
0.4091). ;

5.3 Speech Data—Twisted. For an even more dltﬁcult experxment we
mix the two sound signals from the previous example by .

x[t] = (s2[t] + 3s1[t] + 6) cos(1.5m51[t])
x2[t] = (s2[t] + 3s1[t] + 6) sin(1.57s1[¢]),

which twists the sources. The first source is mapped along a spiral around
the center, and the second controls the deviation from that spiral. Note |
that the second source contributes much less to the mixture than the first
source. We map the data to a feature space induced by a gaussian RBF
kernel, k(a. b) = ¢~1¥I" and apply kernel PCA to 500 randomly chosen
input vectors. We obtam a 25-dimensional subspace of feature space that
approximates the high-dimensional manifold in feature space very well.
Projecting the mixed signals into that space, we obtain W,[t] and, finally
applying TDSEP (with time shifts t = 0....,7), we recover 25 signals,
among which we select the signals of mterc,st autamatzcaﬂy Agam, these
signals have very high correlations with the true sources (carr(yg,sl)
0.9900, corr(ye, s2) = 0.9466), whereas the linear ones do not (corr(y5”.51) =
0.5703, corr( f’” $7) = 0.0483). Also, their scatter plot and their waveforms
represented in the right panels in the first and third rows of Figure 8 show
how well even the second source is faund that is hidden as the amphtude
of the spiral.

5.4 Analysis of the Cross-Correlations Through Time. To analyze the
found signals y more carefully, we calculated the cross-correlations with
quasi sources for different time-lagged versions of the signals. ‘
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Figure 8: Speech data—twisted. Scatter plots and waveforms t.”;if{hﬁ mmffnfsar
mixture and the nonlinear demixing (first and third rows) and of linear demixing
and the true source signals (second and fourth rows),
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Figure 9: Cross-correlations between (left) the quasi sources and y,[f — 7] and
between (right) the quasi sources and s, [t — 1] for different t.

Figure 9 shows the cross-correlations of the quasi sources up to degree 3
(see section 4.1) and y»[t — t] and sy [t — t] for different T (witht = 0, ..., 7).
On the right panel, we see that s is correlated to 5352, s}, and 73, as already
discussed in section 4.1. Furthermore, there are correlations with the time-
shifted versions of those quasi sources. Exactly the same holds for 3, as
we see in the left panel; that is, y recovers sy, including its time structure.
Corresponding results apply to yo and s, (see Figure 10).

To give some clue as to what the other signals that TDSEP extracted are,
weanalyzed yy, . .., 25 inasimilar way. The upper panel of Figure 11 shows
the cross-correlations of these signals with the quasi sources. For example,
we see that y, is strongly correlated with s7 or that yi is correlated with
8183, 81 S%,Q?Sz,‘ and Q?bg Most signals have close connections to certain quasi
sources. The lower panel of the same figure shows the corresponding cross-
correlations for time-shifted signals y[t — r]. Through time, the correlations
are less pronounced.

5.5 Kernel PCA vs. Random Sampling vs. Clustering and the Choice of
d. In this section, we compare the three proposed dimensionality-reduction
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Figure 10: Cross-correlations between (left) the quasi sources and ys[f = rland
between (right) the quasi sources and s;[t - ] for different 7.

methods and discuss the trade-off in choosing the dimmsigmalitg of the
subspace. We repeat the experiment set out in section 5.3 using ‘dr;ff&regxi
methods for dimensionality reduction—kernel principal component anal-
ysis (PCA) versus random sampling versus cluste;ji.ngfﬁngi for diffe: ent
subspace dimensionalities 4. The results are shown in Figure 12. Overall, it
tirns out that it does not matter too much for the separation reskx;:}.j(meaf
sured here as the correlation to the true sources) which of the three rec:uctiﬁn
methods is used. Kernel PCA has slightly more difficulties for finding the
second source for small 4. This might seem surprising because kernel PCA
is optimal in finding a subspace of the feature space that contains most of
the variance of the projected data, so one would expect bettex“ pfarformange.
The reason is that the PCA criterion does not necessarily optimize for good
separation performance. ' . :

Furthermore, we see from the plots that increasing d generally improves

; o b er osl0
the separation performance. But since the running time of TDSEP increases

W0 TDSEP involves simultaneous diagonalization of several d x d matrices, that is,
O,
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Figure 11: Cross-correlations between the quasi sources and y{t — t] for (top)
t = 0 and (bottom) r = 2.
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Figure 12: Correlations of the two source signals to the best-matching cxtmcted" ’

signals for kernel PCA versus random sampling versus clustering and fi}r dxf~ -

ferent subspace dimensionalities d.

for larger and larger d (see Figure 13), one should try to choose d wm t;hat‘ ,
the running time of TDSEP is still tolerable whxie the mbsp&c& is complex
enough to demix.

The lower panel of Figure 12 shows some mtemshng be}:mvwr* f{)r amaﬂ
d, the second signal cannot be reconstructed very well. But increasing d to

10 and larger, the subspace has enough wmpi@mw to unfold, zmci tyhu»s, i«‘.} o

recover the second source.
The third column of Figure 14 validates this finding. Shown are the @catt&r;‘ .
plots for the same ex pmmem and we see that the biggest improvement
happens between d = 9 and d = 12. The other columns show scatter plots
for the two other experiments. Interestingly, the second mixture (in the
second column) does not require a very large d; d 6 is enough m recover
the sources reasonably well. ~ “

5.6 Stochastic Artificial Data. For completeness, we also test our
method for stochastic data with short correlation length. We generate 2000
data points from two autoregressive processes of order 3 and mix them
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Figure 13: Computing times in seconds for the various runs of the experiment
shown in Figure 12.

using the twisting mixture from the previous example:

x1[t] = (s2[t] + 3s1[¢] + 6) cos(1.5751[t])
x2[t] = (s2[t] + 3s1[t] + 6) sin(1.5ws¢[#]).

We applied kTDSEP with the same parameters as in the previous experi-
ment (kernel PCA applied to 500 randomly chosen input vectors, subspace
dimensionality d = 25). As in the experiments before, the linear method
is not able to uncover the sources (corr(yg”, s1) = (.7893, C()rr(yg"”, Sp) =
0.0080), but our nonlinear method is able (corr(yy, s1) = 0.9917, corr(yo, $2)
= 0.9370), as can be seen in Figure 15.

5.7 More Than Two Sources. In the experiments so far, we confined
ourselves to mixtures of two sources because they can be nicely visualized.
The next experiment demonstrates that our algorithm also works well with
more than two sources.

We nonlinearly mix seven audio sources s[t] = [s;[f]....,s7[¢]]" (piano
music, scientific utterance, cembalo music, street noise, cello music, funk
music, and political speech, each with 20,000 samples, sampling rate 8 kHz)
by two steps:

1. Scale the signals between —1 and 1, that is, they are contained inside
the centered hypercube with side length 2. Rotate that cube such that
its main diagonal (which has length 2+/7) is aligned with the first axis.
This operation can be done by some orthogonal 7 x 7 matrix A.

2. Rotate around different planes by an angle that depends on the first
component of the vector §[t] = As[t], which we denote by 51{t]. More
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Figure 14: Scatter plots for different values of d: (left) artificial data, {middle)
speech data—bent, and (right) speech data~twisted.
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Figure 15: Stochastic artificial data. Scatter plots and waveforms of the nonlinear
~mixture and the nonlinear demixing (first and third rows) and of linear demixing
and the true source signals (second and fourth rows).
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precisely, for a vector §[t], we define a 7 x 7 matrix,

0 0 0 0 0 0 07

0 0 §[ 0 0 0,0

0 —u[t] o0 0 0 0 0
BGI)={0 0 0 o0 s 0 0 |,

0 0 0 —&[t] 0 0. 0]

0o 0 0 0 0 0 &[]

0 0 0 0 o &l 0

and use it to define a rotation matrix (employing the matrix éxponen—~
tial), o .

CE[) = efﬂ(g{f})’ ;

that rotates along the second and third planes, along the fQQrtll aﬁd
fifth planes, and along the sixth and seventh planes by theangle 75 (.
Note that C(5[t]) is an orthogonal matrix that is continuous insffl.

The complete mixture!! then reads,
x[f] = C(As[As{{].

Linear TDSEP is not able to demix x[f]. Listening to the linearly demixed
signals reveals that each component contains at least contributions of two
sources (and they are distorted as well). Their correlations with the true
sources are below (.82 (cc)rr(g/”z’"’.sl) = (.7805, carr(yﬁ*”,sz) = 0.7415,
corr(yi", s3) = 0.6663, corr(yy", s4) = 0.7481, corr( yi s5) = 0.7550,
corr(yl”, sq) = 0.5929, corr(y", s7) = 0.8130). ‘
For KTDSEP, we apply k-means clustering to 500 randomly chosen in-
put vectors and obtain d = 40 vectors vi,....vgo. The mapped signals
®(x[t]) in the feature space (induced by a gaussian RBF kernel k(a,b) =
exp(—lla — bjj%)) are projected onto the images of those 40 vectors. Apply-
ing TDSEP (with time shifts T = 0,...,30) to those resulting 40 signals
¥, [t] and using the selection procedure described above (see Figure 16),
we find the seven sought-after sources. Those seven nonlinearly demixed
signals not only have high correlations with the true sources (corr(y1. s1) =
0.9432, corr{ys, 52) == 0.9496, corr(yzg. $1) = 0.9394, corr(yis, s7) = 0.9218,
corr(ys, s1) = 0.9508, corr{yz, s2) = 0.9142, corr(yg. s1) = 0.9402), but a‘l‘s‘c)
their waveforms match the true sources very well (see the right panels of -
Figure 17). G
Note that the complexity of the algorithm depends mostly on the choice of
d. Even to demix seven nonlinearly mixed sources, the most time-consuming,

1} This mixture is invertible because of the orthogonality and continuity of the matrices
involved. .
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Figure 16: More than two sources: The 17 largest correlations between the
demixed signals y[t] and the signals that we obtain after applying kTDSEP again
to y[t]. The numbers at the foot of the bars are the indices of the corresponding
signals in y[t]. The seven leftmost bars indicate the sought-after sources.

part of the algorithm is simultaneously to diagonalize 31 time-shifted co-
variance matrices of size 40 x 40, which can be done very fast (Cardoso &
Souloumiac, 1996). On a 600 MHz Pentium laptop, the Matlab calculation
for this experiment with seven sources took less than 6 minutes.

6 Conclusion

Our work combines three interesting ideas: kernel feature spaces, tech-
niques for dimensionality reduction, and blind source separation. The first
two enable us to construct an orthonormal basis of the low-dimensional
subspace in kernel feature space 7 where the data lie. This technique estab-
lishes a highly useful (scalar-product-preserving) isomorphism between the
image of the data points in F and a d-dimensional space . Moreover, we
can acquire knowledge about the intrinsic dimension of the data manifold in
F from the learning process. Furthermore, using this formulation, we tackle
the problem of nonlinear BSS from the viewpoint of kernel-based learning.
The proposed kTDSEP algorithm allows us to unmix arbitrary invertible
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Figure 17: More than two sources: Waveforms of (upper left and right) the
nonlinear mixture and the nonlinear demixing and of (lower left and right) the
linear demixing and the true source signals.

nonlinear mixtures with low computational costs. Key to the success of our
algorithm are the time correlations exploited by TDSEP; intuitively, they are
the glue that provides the coherence for the separated signals.
Experiments on artificially generated signals and various sound signals,
also beyond two sources, show that an elegant solution has been found for
a challenging problem. Applications where nonlinearly mixed signals can
occur are found in the fields of telecommunications, array processing, and
biomedical data analysis. Potentially, KTDSEP might contribute to revealing
nonlinear phenomena in biological neural systems. Furthermore, our algo-
rithm could be used to provide software-based correction of sensors that
have nonlinear characteristics due, for example, to manufacturing errors.
Clearly, kTDSEP is only one algorithm that can perform nonlinear BSS;
kernelizing other BSS algorithms can be done following our reasoning.
Recent work by Bach and Jordan (2001) considers a further interesting
application of kernel-based methods. In contrast to our algorithm, which
provides a nonlinear separation, Bach and Jordan work in the context of
linear independent component analysis (ICA) and use the kernel trick in
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order to obtain a clever approximation of the mutual information. Future
 research will consider combinations of both complementary approaches.

Appendix A: Approximating the Data Manifold in Feature Space ___

For a polynomial kernel,
" k(a,b)= (@ b+,

the feature space is finite-dimensional. For example, for homogeneous ker-
nels, that is, ¢ = 0, the dimensionality can be calculated by the formula

(n+p—1!

with n being the dimensionality of the mixed signals (taken from Mika,
1998). For instance, at n = 3 and for a polynomial kernel of degree p = 5,
the feature space is 21-dimensional, which can also be seen by plotting the
largest eigenvalues of the corresponding kernel matrix (see Figure 18, left
panel). We clearly see the gap between the twenty-first and the remaining
eigenvalues, which should actually be zero.!? Obviously, in this case we can
fulfill equation 2.1 with d = 21. For a gaussian RBF kernel,

k(a, b) = e—l;a~b“2‘

the feature space is infinite-dimensional. However, T data points are always
contained in a T-dimensional subspace—the one spanned by the mapped

points themselves—but since the corresponding eigenvalues are decaying
exponentially fast (see Figure 18, right panel), the data in feature space can
be approximated very well with a much lower-dimensional subspace (for
more detailed discussions on this issue, see Williams & Seeger, 2000; Bach
& Jordan, 2001). Therefore, we can approximate equation 2.1 for suitable d.

Appendix B: Kurtosis-Based ICA in Feature Space?

Exploiting the temporal structure of the source signals is essential for good
performance of our method. However, for nonlinear feature extraction, it
would be desirable to construct nonlinear kernel ICA methods where the
source signals are assumed to be independent in time. We have tried ap-
plying standard linear ICA algorithms such as JADE and FastICA (with
deflation) in feature space but could not get successful results. One rea-
son might be that general nonlinear ICA problems (see equation 1.1) have
nonunique solutions, as explained in Hyvérinen and Pajunen (1999). This
indeterminacy in kernel Hilbert space has not been clearly understood yet

12 Those eigenvalues are nonzero for numerical reasons.
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Figure 18: The largest eigenvalues of the kernel matrix on a logarithmic scale:
(left) for polynomial kernel of degree 5 and (right) for gaussian RBF kemeL

and is beyond the scope of this article. The other reason is that some of the
linear ICA contrast functions are not appropriate in feature space, Which
we will examine here.

As an example, we show that by simply applying kurtosis-based [CA
methods (deflation) in feature space, we cannot extract the original sources.
For this, we consider an example discussed in Harmeling et al. (2001):

Xy = ans) + ansy + hisis

Xp = (2181 + 4287 + brs19).

LL e

Let us take a polynomial kernel of order 2,
k(a.b) = (a'b+ 1),

which introduces a six-dimensional feature space F represented by
X1, %2, X3, %5, x1x2, 1.

Kurtosis-based ICA methods pick linear mixtures y’s of these six basis di-
rections, which are the local maxima of the scaled kurtosis;

El(y — 1%} = 3E[(y — w)*P _ Ely — )]
Elty — El(y — )]

where p = E[y]. From the bilinear form of the ICA model, we see that any
vector in the feature space F can be represented as a linear combination of
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_ nine quasi sources,'* which are polynomials of s; and s,:
- 2 2 -
51,52, 51, 53, 5152, 5152, 5153, 5253, 1.

~ For simplicity, we will use the following transformed quasi sources instead,
- where o7 = E[s7] are the variances of the signals:

5
$1, 52, 5:1"' - 0'12,55 — 0y, 5182, (S% — 612)52,
2 2
51(53 — 03). (7 — o)(53 — o), 1. (B.2)

In general, only pairs
w181 + ag(s% - 012) and s + /32(5% — 0'22), i, BieN (B.3)

are mutually independent.'* We can show the following proposition, which
implies that the kurtosis-based ICA method does not work; that is, it does
~not give solutions expressed as equation B.3.

Pfoposition¢ Let
yila) = aisi+a st — o), o meNi=12

be an independent signal included in equation B.3. Then inequalities
K (a)s) = Ky(a)),  Vaj.ap e % (B.4)
K(s112(0)) = R(ya(aw)), Yo, € R (B.5)

hold. That is, the kurtosis of the independent signals yy (o) and yr (o) are equal to
or smaller than that of
yi{@)sy = 1515 + aa(st — o)ss,

S1ifz{ey) = 0518 + 0!25,3(55% - 0“;;:_2),
which ave not included in equation B.3.

This proposition means that the original sources s1 or s; or their transfor-
mations yy () or ya2(a) do not have maximum kurtosis, #. In other words,
independent sources cannot be extracted by applying the deflation method
based on kurtosis. ‘ '

13 o aiv.cli sional p ;
Only a six-dimensional subspace of the space spanned by the nine quasi sources
corresponds to the feature space F.
M 1f 51 or s, are subject to some special distributions, it may happen that some other
nontrivial pairs become mutually independent (see Hyviirinen & Pajunen, 1999).
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Proof. As a special case of the moment inequalities for a random variable z,

El)F z B[P a>p >0,
the following inequality holds:
E[s*] = E[s?1°, i=1,2.

Therefore, equation B.4 follows from this inequality easily:

Ely(@?] Flssl 4

£(y1{a)s) = Elyr (@2 E[s2]2
Eln@?® .
% Byt 0 = F@):

The other inequality, equation B.5, or even more general inequalities can be
proved in the same way.
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A method of supervised learning for multilayer artificial neural networks -
to escape local minima is proposed. The learning model has two phasesr ;
a backpropagation phase and a gradient ascent phase. The backpmpaga' .
tion phase performs steepest descent on a surface in weight space whose
height at any point in wenght space is equal to an error measure, and Lf; .
finds a set of weights minimizing this error measure. When the backprop- .
agation gets stuck in local minima, the gradient ascent phase attempts to
fill up the valley by modifying gain parameters in a gradient ascent direc-

tion of the error measure. The two phases are repeated until the network
gets out of local minima. The algorithm has been tested on benchmark .
problems, such as exclusive-or (XOR), parity, alphabetic characters learn-
ing, Arabic numerals with a noise recognition problem, and a realistic
real-world problem: classification of radar returns from the mnoaphere
For all of these problems, the systems are shown to be capable of escapmg
from the backpropagation local minima and converge faster when using
the new proposed method than using the simulated annealmg techmques ~

1 Introduction

The backpropagation algorithm (Rumelhart, Hmtm&, & Williams, 1986) is
one of the most widely used and effective alg,omhm:» for training feed-
forward neural networks. Over the past decade, backpropagation and its
variations have achieved increasing popularity among scientists, engineers,
and other professionals as tools for tackling a wide variety of information.
processing tasks. Unfortunately, the traditional method for training multi-
layer networks is notoriously slow and unreliable when applied to many
practical tasks. Several fast training algorithms, for example, fast second-
order training methods, have been proposed (Watrous, 1987; Kramer &
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